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Abstract—A method for simulating power law noise in clocks and oscillators is presented based on 

modification of the spectrum of white phase noise, then Fourier transforming to the time domain. Symmetric 

real matrices are introduced whose traces–the sums of their eigenvalues–are equal to the Allan variances, in 

overlapping or non-overlapping forms, as well as for the corresponding forms of the modified Allan variance. 

Diagonalization of these matrices leads to expressions for the probability distributions for observing a 

variance at an arbitrary value of the sampling or averaging interval, and hence for estimating confidence in 

the measurements. Comparison with flicker-like noise from a spectrum analyzer is discussed. 
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I. INTRODUCTION  

The characterization of clock performance by means of average measures such as Allan variance, 

Hadamard variance, Theo, and modified forms of such variances, is widely applied within the time and 

frequency community as well as by most clock and oscillator fabricators.  Such variances are measured by 

comparing the times    on a device under test, with the times at regular intervals     on a reference.  

Imperfections in performance of the clock under test are studied by analyzing noise in the time deviation 

sequence            or the fractional frequency difference during the sampling interval       : 

     
   

 
       

   
  (1) 

The frequency spectrum of fractional frequency differences can usually be adequately characterized by 

linear superposition of a small set of types of power law noise.  The frequency spectrum of the fractional 

frequency differences of a particular noise type is given by a one-sided spectral density [1,2] 

                       (2) 

The units of spectral density are        For the common power-law noise types, α varies in integral steps 

from +2 down to -2 corresponding respectively to white phase modulation, flicker phase modulation, white 

frequency modulation, flicker frequency modulation, and random walk of frequency. 

Simulation of clock noise can be extremely useful in testing software algorithms that use various 

windowing functions and Fourier transform algorithms to extract spectral density and stability information 

from measured time deviations, and especially in predicting the probability for observing a particular value 

of some clock stability variance.  This paper develops a simple simulation method for a time difference 

sequence that guarantees the spectral density will have some chosen average power law dependence.  

Expressions for the common variances and their modified forms can be derived that agree with expressions 

found in the literature, except in some cases for the modified Allan variance.  This approach also leads to 

predictions of probabilities for observing a variance of a particular type at particular values of the 
averaging time.  A broad class of probability functions naturally arises.  These only rarely correspond to 

chi-squared distributions.   
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This paper is organized as follows.  Section II introduces the basic simulation method.  Section III applies 

the method to the overlapping Allan variance.  A symmetric real matrix is defined such that the Allan 

variance is equal to the sum of the eigenvalues of the matrix.  Section IV shows how diagonalization of the 

averaged squared second-difference operator, applied to the simulated time series, leads to expressions for 

the probability of observing a value of the variance for some chosen value of the sampling or averaging 

time.  In Section V the probability for observing the spectral density as a function of frequency is 

compared with measurements of flicker-like noise.  Probability distributions for observing the Allan 

variance, in terms of eigenvalues, are discussed in Section VI.  Section VII applies the approach to 

measurements with dead time and Section VIII summarizes the results. 

II. DISCRETE TIME SERIES 

We imagine the noise amplitudes at Fourier frequencies    are generated by a set of   normally 

distributed random complex numbers          , each component having mean zero and variance  , 

that would by themselves generate a simulated spectrum for white phase noise.  These random numbers are 

divided by a function of the frequency,         , producing a spectral density that has the desired 

frequency characteristics.  For ordinary power law noise, the exponent is a multiple of ½, but it could be 

anything.  The frequency noise is then transformed to the time domain, producing a time series with the 

statistical properties of the selected power law noise.  The Allan variance, Modified Allan variance, 

Hadamard Variance, variances with dead time, and other quantities of interest can be calculated using 

either the frequency noise or the time series. 

In this paper we discuss applications to calculation of various versions of the ordinary overlapping Allan 

variance. Of considerable interest are results for the probability of observing a value of the Allan variance 

for particular values of the sampling time τ and time series length  .  The derivations in this paper are 

theoretical predictions.  A natural frequency cutoff occurs at              where    is the time between 

successive time deviation measurements. This number is not necessarily related in an obvious way to some 

hardware bandwidth.  The measurements are assumed to be made at times     , and the time errors or 

residuals relative to the reference clock are denoted by   .  The averaging or sampling time is denoted by 

      , where   is an integer.  The total length of time of the measurement series is      .  The 

possible frequencies that occur in the Fourier transform of the time residuals are 

    
 

   
            

 

 
     

 

 
  (3) 

Noise Sequences.  In order that a set of noise amplitudes in the frequency domain represent a real series in 

the time domain, the amplitudes must satisfy the reality condition 

                          . (4) 

  random numbers are placed in     real and     imaginary parts of the positive and negative frequency 

spectrum. Since the frequencies          represent essentially the same contribution, we can omit the 

variable     .  We shall assume the variance of the noise amplitudes satisfies 

                                       
 

 
  (5) 

The random variables corresponding to unequal values of the frequency index are assumed to be 

uncorrelated.  In order to avoid division by zero, we shall always drop the Fourier amplitude corresponding 

to zero frequency.  This only means that the average of the time residuals in the time series will be zero, 

and has no effect on any variance that involves time differences.  
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We perform a discrete Fourier transform of the frequency noise and obtain the amplitude of the     

member of the simulated time series: 

     
  

           
 

         

            .  (6) 

The multiplicative constant has been carefully chosen to give the correct spectral density; for white phase 

noise     and the time series would give rise to a constant average spectral density; for other noise types 

Eq. (6) leads to the correct power law noise for spectral density.  To show this, the average two-sided 

spectral density of the time residuals is obtained from a single term in Eq. (6): 

        
  

             
    

     

  
  

  

     
    (7) 

where             is the spacing between successive allowed frequencies.  The average two-sided 

spectral density of fractional frequency fluctuations is given by the well-known relation [1] 

                    (8) 

and in agreement with convention, Eq. (2), the one-sided spectral density is 

        
                                                     

                                    
  (9) 

Thus the simulation will always give rise to the conventional form for the one-sided spectral density [3].  

In the next section we discuss the form of the simulated overlapping Allan variance. 

III. OVERLAPPING ALLAN VARIANCE 

Consider the second-difference operator defined by  

     
   

  
 

                      (10) 

 

Here the averaging time is          The fully overlapping Allan variance is formed by averaging the 

square of this quantity over all possible values of   from 1 to        Thus 

   
      

 

    
      

       
      . (11) 

In the context of the present simulation, “averaging” means taking an average over all possible values of 

the random variables       In terms of the time series, Eq. (6), the second difference can be reduced using 

elementary trigonometric identities: 

     
   

   
  

            
 

  

            
         

       
   

 
  

 
. (12) 

By construction this second difference is a real quantity.  So we can form the square in Eq. (11) by 

multiplying the second difference by its complex conjugate: 
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                (13) 

The average of the product of random variables only contributes when    , so (we don’t worry here 

about the special case of maximum frequency) the average Allan variance reduces to 

   
     

  

         
 

     
   

 
  

 

        , (14) 

since every term in the sum over   contributes the same amount.  The zero frequency term is excluded from 

the sum.  For convenience we introduce the abbreviation 

   
   

         
 . (15) 

If we sum over positive frequencies only, a factor of 2 comes in except at the maximum frequency.  Then 

if the frequencies are spaced densely enough to pass from the sum to an integral, the frequency spacing  

           is already present in the sum and we obtain the well-known result 

   
       

       

      
             

 
  (16) 

Similar arguments lead to known expressions for the non-overlapping and modified versions of the Allan 

variance as well the Hadamard variance.  These cases will be discussed elsewhere. 

IV. PROBABILITIES 

In the present section we shall develop expressions for the probability of observing a particular value    

for the overlapping Allan variance in a single measurement, or in a single simulation run.     is a random 

variable representing a possible value of the overlapping variance.  We use a subscript “o” to denote the 

completely overlapping case. To save writing, we introduce the following abbreviations:  

   
 

 
     

   

 
  

 

   

  
 
  

    
        

 
                  

 
 

     
   

 
  

 

   

  
 
  

    
        

 
  . (17) 

The dependence on      and   is suppressed, but is to be understood.  We write the second difference in 

terms of a sum over positive frequencies only, keeping in mind that the most positive and the most 

negative frequencies only contribute a single term since              .  The imaginary contributions 

cancel, and we obtain 

     
   

        
   

 
   

   

 
     . (18) 

The Allan variance is then given after averaging by the following equation 

   
     

 

    
      

 
 
 

    
 
 
 
       (19) 

To compute the probability that a particular value    is observed for the Allan variance, given all the 

possible values that the random that the random variables             can have, we form the integral [6] 
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        . (20) 

The delta function constrains the second difference to the specific value    while the random variables 

            ,…     range over their (normally distributed) values. There is no integral for     .  

Inspecting this probability and Eq. (17) for the second difference indicates that we could dispense with the 

factors of     and work with normally distributed random variables having variances unity.  Henceforth 

we could set     . 

The exponent involving the random variables is a quadratic form that can be written in matrix form by 

introducing the     dimension column vector   defined by its transpose 

                      ]. (21) 

Then 

 
 

 
    

    
   

 

 
    

 

 
       , (22) 

where 1 represents the unit matrix.  The delta-function in Eq. (20) can be written in exponential form by 

introducing one of its well-known representations [4], an integral over angular frequencies : 

        
  

  
 

        
 

    
      

   
 
 

   

  
   

 
  

    
 

         

        . (23) 

The contour of integration goes along the real axis in the complex  plane. 

The squared second difference is a complicated quadratic form in the random variables 

                     If this quadratic form could be diagonalized without materially changing the 

other quadratic terms in the exponent, then the integrals could be performed in spite of the imaginary factor 

  in the exponent.   To accomplish this we introduce a column vector    that depends on         and 

whose transpose is 

     
 

    
 
   

 
    

 
   

 
         

 
,     

 
 . (24) 

Dependence on the averaging time parameter   is not written explicitly but is understood.  The column 

vector contains all the dependence of the second difference on frequency and on the particular power law 

noise, but does not depend on the random variables.  We use indices     as matrix (frequency) indices.  

The second difference operator can then be written very compactly as a matrix product: 

     
   

        
 
           (25) 

and then 

 
 

    
      

   
 

 

     
 

    
   

     
 
  . (26) 

The matrix in parentheses, 

     
 

    
   

     
 
 , (27) 
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is real and symmetric, and does not depend on the random variables.   A real symmetric matrix can be 

diagonalized by an orthogonal transformation, which we denote by   [5,6].   We shall not need to 

determine this orthogonal transformation explicitly, but it could be found by first finding the eigenvalues  

and eigenvectors    by solving the equation            The transformation   is a matrix of dimension 

             consisting of the components of the normalized eigenvectors placed in columns.  Then 

        where   is a diagonal matrix with entries equal to the eigenvalues of the matrix      Then 

since the inverse of an orthogonal matrix is just the transpose of the matrix itself,  

          (28) 

The matrix is thus diagonalized, at the cost of introducing a linear transformation of the random variables: 

 
 

    
      

   
 

 

                             (29) 

We introduce     new random variables by means of the transformation 

        (30) 

Then the term in the exponent of Eq. (23) representing the Gaussian distributions is 

  
 

 
      

 

 
         

 

 
      

 

 
   

    
   . (31) 

The normal distributions of the random variables remain basically unchanged.  Furthermore, the 

determinant of an orthogonal matrix is     so changes in the volume element of integration over the space 

of random variables remains unchanged in form: 

                                                      . (32) 

The probability is therefore 

        
  

  
            

 
       

  
 

 
   

   
    (33) 

An eigenvalue of zero will not contribute in any way to this probability since the random variable 

corresponding to a zero eigenvalue just integrates out. 

Suppose the eigenvalue    is repeated    times.  Integration over the random variables then gives a useful 

form for the probability: 

        
  

  

     

               
 . (34) 

Finally the contour integral may be deformed and closed in the upper half complex plane where it encloses 

the singularities of the integrand.  Evaluating the integral gives the probability, from which confidence 

intervals of interest may be calculated.  We shall illustrate this in succeeding sections.  A similar reduction 

of probabilities can be developed for other interesting variances.   

Properties of the eigenvalues.  We state here without proof a number of properties of the eigenvalues.  It 

may be shown that all eigenvalues are either positive or zero.  The zero eigenvalues can be completely 

eliminated by defining a matrix similar to that in Eq. (27) that is reduced in size.  In general the dimension 

of the matrix    is      but only      eigenvalues are non-zero.  The number of significant eigen-
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values is in fact equal to the number of terms in the sum over   in Eq. (11).  Numerical calculation of many 

cases seems to indicate that except for white PM, the non-zero eigenvalues are all distinct.  When repeated 

eigenvalues occur an even number of times, the integrand of Eq. (34) has poles and the integral can easily 

be evaluated.  In some of these cases chi-squared probability distributions can arise.  In all other cases 

repeated eigenvalues have never been found so far.  The largest eigenvalues correspond to branch points of 

the contour integral that are closest to the real axis.  When the eigenvalues are all distinct, after closing the 

contour in the upper half ω-plane the contour can be reduced to integrals between alternating pairs of 

adjacent singularities; this is a consequence of the square roots that occur in the denominator of Eq. (34). 

An interesting result arises when one computes the trace of the matrix      Since the trace is not changed 

by an orthogonal transformation,  

                              (35) 

The sum of the diagonal elements of     equals the sum of the eigenvalues of       If we then explicitly 

evaluate the sum of diagonal elements we find 

      
 

    
                

 

           
 
 
 

    
 
 
 
    

         (36) 

from Eq. (19).  Thus the overlapping Allan variance is equal to the sum of the eigenvalues of the matrix 

      Similar results can be established for the other types of variances. 

V. SPECTRAL DENSITY: AN APPLICATION TO FLICKER-LIKE NOISE 

In this section we apply these methods to the calculation of the probability distribution for a power-law 

spectral density and apply it to actual measurements.  From Eqs. (7-9), before averaging, a single-sided 

spectral density at a particular frequency is simulated as 

        
    

 

   
   

    
  . (37) 

Following the procedure of Eq. (23), the probability of finding a value   will be 

        
  

  
 

      
    

 

      
    

   
 

 
  

    
 

         

    

 

  
  (38) 

The integrals over the random variables are straightforward; no additional diagonalization is necessary.  

Each integral gives the same factor so the probability is 

        
  

  
 

    

        
  

 

  
 

         
  

    
 .  (39) 

For comparison of this probability distribution with measurements, Archita Hati and Craig Nelson of NIST 

provided 1024 independent measurements of amplifier noise as a function of frequency offset from the 

carrier; one such run is illustrated in Figure 1.  Usually many such runs are averaged and the average 

spectral density is presented as the measurement result.  In Figure 1 the frequency spacing between points 

is 0.61875 Hz.  The conversion from time residuals to spectral density is not known, but by selecting a 

small range of frequencies and collecting data from many such independent runs, the number of times a 

spectral density occurs within the range of a particular bin can be reduced to a probability and compared 

with Eq. (39).  
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Figure 1.  Flicker-like spectral density data from an amplifier. 

When these data are plotted on a log-log scale it is found that the spectral density is proportional to    

where           so the noise process is not exactly flicker noise, but it is similar to flicker noise.  The 

probability function, Eq. (39) is then determined except for one overall constant,     which is the unknown 

conversion between time residuals and spectral density (the density was provided as rms voltage per root 

Hz).   Figure 2 shows plots of the theoretical number of occurrences, proportional to Eq. (39), at two 

frequencies, together with a histogram of the number of occurrences  constructed from the data.  The 

values of spectral density were collected into bins of width                        for plotting as a 

histogram. 

 
 
 
 
 
 
 
  
 
  
 
 
 
 
 
 
 
 
 
Figure 2.  Histograms of occurrences of spectral densities of flicker-like noise at two frequencies; smooth lines are 

simulated results, Eq. (39). 

 

The probability function Eq. (39) can easily be used to find the mean, median and 25% and 75% 

confidence levels of the spectral density distribution and hence to compare with the data.  Figure 3 
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provides these theoretical plots, with no additional adjustment of parameters.  The corresponding values 

obtained from the data are given at several frequencies.  The simulated probability distribution, Eq. (39), 

begins to disagree with the data at frequencies lower than about 70 Hz. 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 3.  Comparison between probability function, Eq. (39), and experimental data.  The dots are computed 

directly from the data at frequencies 75 Hz, 100 Hz, 126 Hz, 252 Hz,and 400 Hz. 

 

VI. OTHER PROBABILITY DISTRIBUTIONS 

If a single eigenvalue occurs once only, then Eq. (34) has a single factor in the denominator 

        
 

   
 

       

       

 

  
 

 

     
    

 
        

     

   
. (40) 

For the overlapping variance, when   has its maximum value       , there are two unequal eigenvalues.  

The probability integral can be performed by closing the contour in the upper half plane.  There are two 

branch points on the imaginary axis, connected by a branch line.  The contour integral can be evaluated 

analytically and gives [7,8]  

       
 

      
 

 
  
 

 
 

  
 

 

  
 
   

  

 
 

 

  
 

 

  
  , (41) 

where    is the modified Bessel function of order zero and      .  This probability is automatically 

normalized.  It differs from a chi-squared distribution of order 1 in that it does not have a singularity at 

       Extensive simulations of Allan variance for flicker FM have been carried out; these agree with 

Eq. (41) showing at least that the theory is internally self-consistent, but comparison with measurements 

have not yet been made.   

Evaluation of the contour integral is generally difficult except in a few cases, such as when eigenvalues are 

repeated an even number of times, or when there are a very small number of eigenvalues.  This indicates 

that applications are most likely to be useful when there are a very small number of terms that contribute to 

the Allan variance—e.g., for long averaging times. 
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VII. OTHER VARIANCES 

The mathematical relationships developed in this paper can be applied to many other variances.   These 

include but are not limited to the non-overlapping Allan variance, modified Allan variance, and both 

modified and un-modified forms of the Hadamard variance [9].  Application can also be made to cases in 

which there is dead time between measurements of average frequency during the sampling intervals.  

Suppose for example that the measurements consist of intervals of length       during which an average 

frequency is measured, separated by dead time intervals of length     during which no measurements 

are made.  Let the index   label the measurement intervals with            An appropriate variance can 

be defined in terms of the difference between the average frequency in the     interval and that in the 

interval labeled by    : 

        
   

 
 

  
                 (42) 

where       is the average frequency in the interval   of length       Then an appropriate variance can be 

defined as 

                
   

 
 
 . (43) 

If the measurements are sufficiently densely spaced that it is possible to pass from a sum to an integral over 

frequencies, then this can be shown using elementary trigonometric identities to reduce to 

        
 

  
   

     

     
                           

 
. (44) 

When     and     there is no real dead time and this variance reduces to the ordinary Allan variance. 

VIII. SUMMARY AND CONCLUSIONS 

In this paper a method of simulating time series for the common power-law noises has been described.   

The approach is designed to guarantee that the simulation gives rise to conventional forms for power-law 

dependence of commonly used noise spectral densities, and agrees with well-established relations between 

spectral densities and Allan variances.  Applications reported here have been mostly restricted to the 

overlapping Allan variance, but can be applied equally well to other variances used to characterize clock 

stability.   It has been shown that the Allan variance is equal to the sum of the eigenvalues of an 

appropriately defined matrix.   Diagonalization of quadratic forms that arise when computing the average 

variance leads to expressions for the probabilities of observing particular values of the variance for a given 

sampling time         The probabilities are expressed in terms of integrals that depend on the 

eigenvalues of matrices formed from squares of the second differences used to define the variance.  

Generally speaking, the number of eigenvalues equals the number of terms occurring in the sums used to 

define averages of the second-difference operators.  This number gets smaller as the sampling time   gets 

larger.  The probability distribution      for some variance   is useful in evaluating confidence intervals 

about the average variance.  Probability distributions      for spectral density are easily derived; 

comparison with measurements for one set of flicker-like noise measurements appear to be mostly in 

agreement. The eigenvalues are usually distinct; only for white PM have eigenvalues been observed to 

occur with multiplicities other than unity.  Methods for computing the probabilities have been presented in 

a few useful cases.   

Other methods of simulating power law noise have been published; the present approach differs from that 

of [11] in that here no causality condition is imposed.  This approach to simulation will be applied to other 

variances used to characterize clock stability in future papers. 
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